# Noble Metal-Catalyzed Water-Hydrocarbon Reaction Paths

С. Ј. Кім

Exxon Research and Engineering Company, Corporate Research Laboratories, Linden, New Jersey 07036

Received September 6, 1977

An investigation of water-hydrocarbon reactions showed vanadium to be a strong promoter for the  $Rh/Al_2O_3$ -catalyzed reaction of water and toluene to produce benzene. Studies with  $Rh/VO_x/Al_2O_3$  were extended to other structurally different hydrocarbons to determine major reaction pathways. A nonaromatic hydrocarbon that cannot aromatize by simple dehydrogenation undergoes random carbon-carbon bond scissions and the resulting fragments react with water to give gaseous products. Cleavage of aromatic carbon-carbon bonds is much slower. This along with the selective adsorption of high molecular weight compounds results in an accumulation of low molecular weight aromatics in the product mixture. Phenanthrene is converted to naphthalene and benzene with no evidence for initial cracking of the central C-C bonds.

#### INTRODUCTION

Water as a hydrogen source in hydroconversion processes is attractive because of the increasing cost of molecular hydrogen and efficient heat balance which can be obtained by combining the conventional steam reforming process (endothermic) and the hydrotreating processes (exothermic).

A prototype of a selective steam reforming process is the steam-dealkylation reaction for which considerable literature data exist (1-5). This study was undertaken to evaluate various noble metal catalysts for this reaction and to examine the reactions of a variety of structurally different hydrocarbons with water over a selected catalyst system.

## EXPERIMENTAL

Materials. A 0.6% Ru/Al<sub>2</sub>O<sub>3</sub> and a 0.6% Ir/Al<sub>2</sub>O<sub>3</sub> catalyst, both characterized to have fully dispersed metal components,

\_

were obtained from D. J. C. Yates, and a Ba promoted massive nickel catalyst (6)from A. Barnett of this laboratory. Other catalysts were prepared by the usual incipient wetness impregnation technique using aqueous solutions of RhCl<sub>3</sub>·xH<sub>2</sub>O,  $H_2PdCl_4$ ,  $H_2PtCl_6$ ,  $Ni(NO_3)_2 \cdot 6H_2O$  and a freshly calcined  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> of 20-40 mesh size and  $100\text{-m}^2/\text{g}$  surface area. After drying, the Pt, Rh, and Pd catalysts were further calcined in air at 450°C for 1 hr. Rhodium catalysts containing vanadium oxide promoter were prepared by two methods. In one case alumina is impregnated with an ethanol solution of VOC1<sub>3</sub>, dried in air at 120°C, and impregnated with a RhCl<sub>3</sub> solution in the usual way. This method was used to obtain a 1.35% Rh-VO<sub>x</sub> (2.4%) as metal)/Al<sub>2</sub>O<sub>3</sub> catalyst. In another case a  $VO_x/Al_2O_3$  catalyst is prereduced at 500°C with hydrogen before the Rh deposition step. A 0.6% Rh-5.6% VO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst

| TABLE | 1 |
|-------|---|
|-------|---|

Dispersion and Specific Activities in Water-Toluene Reaction

| Catalyst<br>wt% as metal<br>on Al <sub>2</sub> O <sub>3</sub> | H <sub>2</sub> -Ch | emisorption              | $H_2O/Toluene reactionb$                          |                           |  |
|---------------------------------------------------------------|--------------------|--------------------------|---------------------------------------------------|---------------------------|--|
|                                                               | H/Mª               | Percentage<br>dispersion | 10 <sup>3</sup> × turnover<br>number at<br>400°C° | Apparent Ea<br>(kcal/mol) |  |
| 0.6 Rh                                                        | 1.11               | 100                      | 13.4                                              | 32                        |  |
| 0.6 Pd                                                        | 0.81               | 81                       | 7.7                                               | 31                        |  |
| 0.6 Pt                                                        | 1.33               | 100                      | 3.5                                               | 35                        |  |
| 0.6 Ru                                                        | 1.50               | 100                      | 2.0                                               | 35                        |  |
| 0.6 Ir                                                        |                    | 100                      | 1.5                                               | 32                        |  |
| 10 Ni                                                         | 0.20               | 20                       | 2.0                                               | 29                        |  |
| 0.3 Rh/0.3 Pt                                                 |                    | (100)                    | 18.0                                              | 34                        |  |
| 0.6 Rh/5.6 VO <sub>x</sub>                                    | 0.69               | 69                       | 61.0                                              | 32                        |  |
| 1.35 Rh/2.4 VO <sub>x</sub>                                   | 0.62               | 62                       | 34.0                                              | 31                        |  |

<sup>a</sup> Group VIII metal.

<sup>b</sup> H<sub>2</sub>O/Toluene mole ratio: 3.9, toluene feed rate: 2.0 ml/hr.

 $^{\circ}$  Molecules benzene formed/surface Group VIII metal atom  $\times$  sec.

was made according to this method. Reagent grade chemicals purchased from Aldrich were checked by glpc analyses and used without further purifications. Deionized water was used in the catalyst preparation as well as in the reactions.

Procedures. The chemisorption measurements were performed according to the procedure described by Vannice (7). A 70°C isotherm at low  $H_2$  pressure was determined for the palladium catalyst (8). A quartz tube (13-mm i.d.) with a Pyrex wool plug was used as a micro fixed bed reactor. The hydrocarbon and water feeds were introduced to the preheating zone of the reactor with syringe pumps and the effluents from the reactor were passed through a trap cooled at  $-78^{\circ}$ C. The gaseous and liquid products thus separated were analyzed by glpc and mass spectroscopy. Temperature control was accomplished with a thermocouple directly inserted into the catalyst bed and a proportional controller, West Model JP. All measurements were done under 1 atm.

For rate measurements, catalysts were ground to collect a 60-80 mesh fraction, an amount in the range of 0.2-1.0 g was charged to the reactor and reduced in H<sub>2</sub> at 500°C for 1 hr. At a preset temperature, water and toluene were pumped at rates of 1.31 and 1.73 g/hr, respectively. After 30 min from the start of feeds, products were collected for 30 min and analyzed. Runs were carried out at several temperatures under conditions where conversions did not exceed 10%.

In runs at high conversions, the original catalysts of 20-40 mesh size were used after reduction at 500°C. Products eluting at 30-150 min from the start were analyzed. In all runs involving the Rh-VO<sub>x</sub> catalyst, no significant activity decline was observed during periods of at least 8 hr. The spent Rh-VO<sub>x</sub> catalysts from such runs typically contained 0.5 wt% carbon. Naphthalene was pumped as a melt. Glpc analyses were done with a Porapack Q column for gases and a silicon oil DC 550 column for liquids. The carbon and hydrogen balances were usually 100  $\pm$  5%.



FIG. 1. Conversions and selectivities achieved by various catalysts in the H<sub>2</sub>O/toluene reaction at 460°C. In each run 1.6 g of catalyst (0.6% noble metal/Al<sub>2</sub>O<sub>3</sub>, 0.6% Rh/5.6%VO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>, 5% Ba/ 25% Ni/Al<sub>2</sub>O<sub>3</sub>) was used with a toluene flow rate of 2.0 ml/hr and H<sub>2</sub>O/toluene mole ratio of 3.9.

## RESULTS AND DISCUSSIONS

## Water-Toluene Reaction

Since the original concept of a steam dealkylation reaction was reported by Haensel (9) in 1948, the catalysis for this reaction has become the subject of ex-

tensive investigations especially in the last decade. This is primarily due to the projected incentive for a process that produces benzene and hydrogen from toluene compared to the conventional hydrodealkylation process that consumes hydrogen.

From the thermodynamic point of view, the dealkylation reaction is the least favored of the following paths:

|     |                              |                                                   | ∆G700°K<br>kcal/mol |
|-----|------------------------------|---------------------------------------------------|---------------------|
| (1) | $C_{6}H_{5}CH_{3} + 2H_{2}O$ | $\rightarrow C_6H_6 + CO_2 + 3H_2$                | -1.6                |
| (2) | $C_6H_5CH_3 + 14H_2O$        | $\rightarrow$ 7CO <sub>2</sub> + 18H <sub>2</sub> | -17.7               |
| (3) | C6H5CH3                      | $\rightarrow$ 5C + 2CH <sub>4</sub>               | -61.2               |

The nickel catalysts that were used in earlier works (10-12) lack satisfactory selectivity features, e.g., Slovokhotova et al. (11) estimate that with a 5%  $Ni/SiO_2$ catalyst the reaction proceeds 40% via path 1, 45% via path 2, and 15% via path 3. Noble metal catalysts, on the other hand, are claimed to be much more selective, 80-95% for path 1 at conversion levels up to 70% and minimal coking (1-5). A study was undertaken to confirm these claims and to establish a meaningful basis in selecting a standard catalyst for the model compound studies.

| Compound                  | H <sub>2</sub> O/HC | Conv. | 100 $\times$ moles product/mole feed converted |     |     |     |               |         |         |                                       |      |
|---------------------------|---------------------|-------|------------------------------------------------|-----|-----|-----|---------------|---------|---------|---------------------------------------|------|
|                           | mole ratio          | (%)   | H <sub>2</sub>                                 | CO2 | со  | CH₄ | $C_2H_6$      | Benzene | Toluene | Others                                |      |
| Benzene                   | 4.9                 | 40.5  | 875                                            | 381 | 80  | 102 | tr            |         | 1.5     |                                       |      |
| Toluene                   | 5.7                 | 92.7  | 435                                            | 180 | 30  | 43  | 1.4           | 83.7    |         | Xylenes                               | 0.17 |
| n-Propylbenzene           | 7.6                 | 67.9  | 518                                            | 203 | 29  | 40  | 19            | 38.6    | 35.7    | Et-Benzene                            | 14.4 |
| <i>n</i> -Heptane         | 8.1                 | 76.1  | 990                                            | 319 | 60  | 106 | 30            | 8.7     | 5.4     | C4-C6                                 | 2.5  |
| Me-Cyclopentane           | 6.1                 | 58.8  | 793                                            | 264 | 78  | 113 | <b>28</b>     | 14.9    | 3.8     | C3C5                                  | 1.0  |
| Me-Cyclohexane            | 7.2                 | 99.5  | 630                                            | 102 | 39  | 16  | $\mathbf{tr}$ | 69.8    | 13.3    |                                       |      |
| Diphenylmethane           | 9.1                 | 64.2  | 1070                                           | 378 | 72  | 24  | tr            | 66.5    | 20.0    | Flourene                              | 6.5  |
|                           |                     |       |                                                |     |     |     |               |         |         | C <sub>8</sub> -C <sub>12</sub> Arom. | 16.3 |
| Diphenylethane            | 10.8                | 79.2  | 780                                            | 305 | 40  | 14  | tr            | 87.6    | 35.9    | C <sub>14</sub> Arom.                 | 7.6  |
|                           |                     |       |                                                |     |     |     |               |         |         | C <sub>8</sub> -C <sub>12</sub> Arom. | 12.8 |
| cis-Decalin               | 8.4                 | 97.4  | 634                                            | 44  | 5.5 | 12  | tr            | 7.5     | 4.0     | Tetralin                              | 2.4  |
|                           |                     |       |                                                |     |     |     |               |         |         | Naphthalenes                          | 78.9 |
| Tetralin                  | 7.4                 | 100   | 480                                            | 119 | 18  | 9.4 | $\mathbf{tr}$ | 22.6    | 6.6     | Naphthalenes                          | 70.4 |
| Naphthalene               | 7.1                 | 40.2  | 980                                            | 449 | 64  | 30  | $\mathbf{tr}$ | 54.6    | 12.2    | $C_8 + C_{11}$                        | 2.2  |
| 9,10-Dihydro-             |                     |       |                                                |     |     |     |               |         |         |                                       |      |
| phenanthrene <sup>b</sup> | 9.0                 | 100   | 790                                            | 268 | 103 | 2.3 | tr            | 12.1    | 2.7     | Naphthalene                           | 36.6 |
|                           |                     |       |                                                |     |     |     |               |         |         | Phenanthrene                          | 40.2 |

TABLE 2

| Water-Hydrocarbon | Reactions | over 1 | RhV, | /Al <sub>2</sub> O <sub>3</sub> | at | 480° | $C^a$ |
|-------------------|-----------|--------|------|---------------------------------|----|------|-------|
|-------------------|-----------|--------|------|---------------------------------|----|------|-------|

a 1.6 g of 1.35% Rh-VOz (2.4% as metal)/Al2O3 was used with 4.0 ml/hr liquid feed rates for both the hydrocarbon and water ≥540°C

#### TABLE 3

Reactions of Naphthalene Derivatives with  $H_2O$  and  $H_{2^a}$ 

|                                                 | ${ m H_2O/Naphthalene}$ | ${ m H_2O/Tetralin}$ | H₂O/Decalin | H <sub>2</sub> /Naphthalene |
|-------------------------------------------------|-------------------------|----------------------|-------------|-----------------------------|
| Mole ratio                                      | 7.1                     | 7.4                  | 8.4         | 7.8                         |
| Conversion to products<br>excluding naphthalene |                         |                      |             |                             |
| and tetralin, $(\%)$                            | 40.2                    | 32.7                 | 17.0        | 16.0                        |
| Selectivity $b$ (%)                             |                         |                      |             |                             |
| Methylnaphthalenes                              | 1.6                     | 2.1                  | 6.3         | 27.9                        |
| Xylenes                                         | 0.7                     | 1.0                  | 5.4         | 7.9                         |
| Toluene                                         | 12.5                    | 19.6                 | 21.2        | 25.2                        |
| Benzene                                         | 55.6                    | 66.9                 | 39.7        | 22.4                        |
| Total gasification                              | 29.6                    | 10.4                 | 27.4        | 16.6                        |

<sup>a</sup> For reaction conditions, see footnote a of Table 1.

<sup>b</sup> Calculated based on materials recovered.

The results of hydrogen chemisorption and kinetic measurements are summarized in Table 1. The rate data for the Rh, Pd, Pt, Ir, and Ni catalysts are in close agreement with the results published by Grenoble (5), the turnover numbers differing by a factor not greater than 1.5. The activity of the Ru catalyst used in this study was, however, about three times lower than that reported by Grenoble.

An important finding of this study is that vanadium is a strong promoter in the Rh/Al<sub>2</sub>O<sub>3</sub> system causing a two- to fourfold activity enhancement, while it is inactive by itself. Mori and Uchiyama noted that a similar rate enhancement was observed when a  $UO_2$  component was incorporated into a  $Rh/Al_2O_3$  catalyst (4). This was attributed to the ability of UO<sub>2</sub> in removing CO from Rh sites via a facile redox cycle involving water. In the present study, no significant variation in the amount of CO in the product gas stream was observed by changing the catalyst from  $Rh/Al_2O_3$  to  $Rh-VO_x/Al_2O_3$ . Although it is not possible to rule out the mechanism of Mori and Uchiyama for the present stystem, the following alternative explanation seems to be more attractive at this time. It was previously observed that a vanadium oxide/ Al<sub>2</sub>O<sub>3</sub> catalyst is active in an olefin-water reaction leading to saturates and  $CO_2$  (13).

For example, over a reduced  $VO_x/Al_2O_3$ catalyst styrene readily reacts with water to give mostly ethylbenzene along with benzene, toluene, and  $CO_2$ , indicating that partial steam reforming coupled with *in situ* hydrogenation is occurring. It is conceivable that in the toluene reaction, some of the hydrogen-deficient intermediates produced on Rh sites move to vanadium sites to complete the reaction.

The performance of catalysts at high conversions was also examined and the results are represented by the selectivity-conversion plot shown in Fig. 1. Clearly Ru and Ni catalysts are not nearly as selective as the other noble metal catalysts which give 83–96% selectivity at various conversion levels up to 89%. The selectivity is thus determined mainly by the metal (1, 5) but is also a function of the degree of conversion (14). The Rh–VO<sub>x</sub> catalyst, for example, gives an increased selectivity of 93% at 55% conversion at 400°C.

## Water-Hydrocarbon Reaction Paths

The reactions of a number of structurally different hydrocarbons with water were examined over a  $Rh/VO_x/Al_2O_3$  catalyst. The following standard reaction conditions were used: 480°C, 1 atm pressure, 4.0 ml/hr liquid feed rate for both the hydrocarbon

and water, and 1.6 g (2.0 cm<sup>3</sup> bulk volume) of 1.35% Rh/2.4% VO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>. This allowed high conversions of feed, usually above 50%, which allowed easy and unambiguous identification of the products, especially those from minor reaction paths. The results, summarized in Table 2, are discussed separately for each class of compounds.

Alkylbenzenes. Benzene readily undergoes gasification to  $C_1$  gases with a conversion

$$\bigcup^{CH_3} \stackrel{k_0^T}{\longrightarrow} \left[ \bigcup^{CH_3} \right]_{ads}$$

It is suggested that readsorption of benzene is effectively suppressed because of  $k_a{}^T \gg k_a{}^B$ . This is in line with the observation that the selectivity of a particular catalyst changes very little over a wide conversion range from less than 10 up to 70% (cf. data in 1, 5, and Fig. 1). Other observations also consistent with such a view have been frequently made throughout this study, e.g., toluene, when mixed with strongly adsorbing species such as condensed aromatic compounds, did not undergo significant conversion under the standard condition.

Another aspect of interest is the cracking modes of long side chains. *n*-Propylbenzene converts with a combined selectivity of 89%to a mixture of benzene, toluene, and ethylbenzene, showing no particular preferences. Maslyanskii *et al.* proposed (15) that over a nickel catalyst alkylbenzenes are adsorbed via the alkyl groups, the benzene ring oriented away from the surface. They suggested the initiation of cracking proceeds from the end of the alkyl chain opposite to the ring. With diphenylmethane and 1,2-diphenylethane, an adsorptive configuration of both rings oriented away from of 41% under the standard conditions. Yet, the reaction of toluene leads to benzene with 84% selectivity at a 93% conversion level. This result cannot be explained by a scheme involving simple successive reaction steps, for the adsorbed benzene precursor generated in the toluene reaction has a minimum 40% chance of undergoing further fragmentation reactions. One reasonable explanation involves competitive adsorption phenomena such as the following:



the surface would be difficult to attain because of the expected steric crowding. Yet the reactions proceed smoothly to give high yields of benzene and toluene together with some by-products from dehydrogenation and dehydrocyclization paths, fluorene, stilbene, phenanthrene, etc. Thus, the exact sequence of cracking steps is not clear at this time. Random side-chain scissions, like that observed in the hydrogenolysis of *n*-butylbenzene over a  $Pt/Al_2O_3$  catalyst (16), may take place, the resulting alkyl fragments undergoing further reactions to  $C_1$  gases.

Alkanes. The reaction of *n*-heptane occurs via two major paths, gasification and dehydrocyclization, with selectivities of 86 and 14%, respectively. This is in accordance with the results obtained by Rabinovich *et al.* (17) with a Rh/Al<sub>2</sub>O<sub>3</sub> catalyst. Characteristic of the gasification pathway is the virtual absence of C<sub>4</sub>-C<sub>6</sub> products which are possible intermediates on the catalyst surface. Methylcyclopentane gives a similar reaction pattern, 81% total gasification and 19% reforming to aromatics. No trace of cyclopentane was detected. Methylcyclohexane, on the other hand, undergoes fast dehydroaromatization to toluene, followed by the usual steam dealkylation step. Assuming the benzene fraction was formed from toluene with a selectivity of 84%, it can be estimated that the first aromatization step occurs with a 97% selectivity. This shows that the total gasification path, which usually dominated the reactions of other alkanes, does not effectively compete with the aromatization reaction.

Condensed ring compounds. Naphthalene readily reacts with water to give 40% conversion under the standard condition with a relatively high 70% selectivity to liquid products, mainly benzene and toluene. 1,2,3,4-Tetrahydronaphthalene (tetralin) and perhydronaphthalene (decalin) undergo reactions that can be characterized by a general sequence of dehydroaromatization to naphthalene, followed by the reaction with water. For example, tetralin is converted almost quantitatively to naphthalene at 400°C and the reaction pattern at 480°C excluding the naphthalene fraction is very similar to that of the naphthalene run (Table 3). Along the series, naphthalene, tetralin, and decalin, however, trends can be detected in both the conversion and selectivity data shown in Table 3. An obvious factor is the hydrogen produced by the initial aromatization step, and accordingly a H<sub>2</sub>-naphthalene reaction under a comparable condition was examined. As noted in the last column of Table 3, a reduced level of 16% conversion was obtained with a distinctly different selectivity pattern. The most interesting observation is the formation of a significant amount of a mixture of isomeric methyl-naphthalenes. This is exactly the reverse of the hydrodemethylation reaction and in this case the surface  $CH_x$  species is trapped by the feed. The ability of water to efficiently scavenge  $CH_x$  species from the catalyst surface (5) provides a simple explanation for the increased conversion and decreased methylnaphthalene selectivity in the H<sub>2</sub>O/naphthalene run as compared with the H<sub>2</sub>/naphthalene reaction.

An indication of the pathway leading from naphthalene to benzene derivatives is derived from the observation that xylenes are formed only in very small amounts that can be readily accounted for by a reverse demethylation path similar to that leading to methylnaphthalenes. As *n*-propylbenzene reacts to given major amounts of toluene and ethylbenzene, dialkylbenzenes would be expected to yield significant amounts of xylenes. Thus, the virtual lack of this product from the waternaphthalene reaction suggests that hydrogenated species, e.g., tetralin, are not intermediates in the cracking pathway. Direct scissions of aromatic carbon-carbon bonds represent the remaining possibility. The first step may well be the scission of the  $C_1-C_9$  bond, as shown below.



9,10-Dihydrophenanthrene reacts in a manner predictable from the above results, a facile dehydrogenation to phenanthrene precedes successive end-ring gasification steps. No trace of biphenyl was detected in the product mixtures.



## ACKNOWLEDGMENTS

The author thanks Mrs. S. Pagnucco for conducting some of the experiments, Drs. D. C. Grenoble and R. B. Long for helpful discussions, and Dr. D. J. C. Yates and Mr. A. E. Barnett for supplying some of the catalysts.

## REFERENCES

- Rabinovich, G. L., Maslyanskii, G. N., and Treiger, L. N., *Kinet. Katal.* 12, 1567 (1971); Rabinovich, G. L., and Mazhaiko, V. N., *Neftekhimiya* 15, 373 (1975), and references cited therein.
- Lester, G. R., U. S. Patents 3,436,433–434 (1969); 3,649,707 (1972).
- Kasaoka, S., Omoto, M., Watanabe, T., and Takamatsu, K., Nippon Kagaku Kaishi 1975, 1418.
- Mori, S., and Uchiyama, M., J. Catal. 42, 323 (1976); U. S. Patent 3,848,014 (1974).
- 5. Grenoble, D. C., J. Catal., in press.

- Taylor, W. F., and Sinfelt, J. H., Fr. 1,565,873 (1969).
- 7. Vannice, M. A., J. Catal. 37, 449 (1975).
- 8. Aben, P. C., J. Catal. 10, 224 (1968).
- 9. Haensel, V., U. S. Patent 2,436,923 (1948).
- Maslyanskii, G. N., and Rabinovich, G. L., Neftekhimiya 1, 182 (1961); 7, 32 (1967), and references cited therein.
- Slovokhotova, T. A., Balandin, A. A., Poletaeva, T. I., and Yu, C. Y., *Izv. Akad. Nauk SSSR*, Otd. Khim. Nauk 1962, 120; Neftekhimiya 4, 844 (1964).
- Yokoyama, T., Igarashi, A., and Ogino, Y., Kogyo Kagaku Zasshi 72, 2531 (1969); Bull. Japan Petrol. Inst. 12, 112 (1970).
- 13. Kim, C. J., unpublished data.
- 14. Wiese, H. K., unpublished data.
- Maslyanskii, G. N., Rabinovich, G. L., Avtonomova, N. Kh., and Brisker, K. L., Neftekhimiya 5, 328 (1965); 6, 553 (1966).
- 16. Csicsery, S. M., J. Catal. 9, 336 (1967).
- Rabinovich, G. L., Treiger, L. M., and Maslyanskii, G. N., Neftekhimiya 13, 659 (1973).